|
_.Library.Status | BeginTraining (_.ML.Model model, _.SQL.StatementResult data, _.ML.TrainingRun trainingrun, _.Library.String name, trainkey) |
| Train an ML model. More...
|
|
_.Library.Status | DataFrameToTempFile (_.Library.Integer tfn, _.SYS.Python df, _.Library.List fieldnames, _.Library.List positions, _.Library.List types, _.Library.List isPredict) |
| Update temp file #tfn using the data in DataFrame df Inputs: tfn: Temp file number df: a Python DataFrame fieldnames=$lb(field1, ...): A $List of strings that indicates names of fields in df that will be added to temp file #tfn positions=$lb(pos1, ...): A list of integers that indicates the corresponding positions of each df field in temp file #tfn types=$lb(type1, ...): A list of integers that indicates the corresponding ObjectScript type of each df field in temp file #tfn isPredict=$lb(predict1, ...): A list of integers that indicates if each df field is predict or probablity. More...
|
|
_.Library.Status | OnInit () |
| Initialize an ML provider.
|
|
_.Library.Status | PredictAll (_.ML.AutoML.TrainedModel trainedmodel, _.Library.Integer tfn, _.Library.List argspos, _.Library.List predpos, _.Library.List probpos, _.Library.String expr, _.Library.List mtorder, _.Library.List mtunary) |
| Bulk Predict.
|
|
_.Library.Status | ResultSetToDataFrame (_.SQL.StatementResult data, _.Library.RegisteredObject info, _.Library.RegisteredObject df, _.Library.Integer count, _.Library.String predictingColumn) |
| Convert an IRIS result set into a dataframe. More...
|
|
_.Library.Status | StartProfiler (_.Library.String options, _.SYS.Python profiler) |
| Start the Python profiler.
|
|
_.Library.Status | StopProfiler (_.SYS.Python profiler, _.Library.String sortby, _.Library.String results) |
| Stop the Python profiler.
|
|
_.Library.Status | TSDataFrameToTempFile (_.Library.Integer tfn, _.SYS.Python df, _.SYS.Python tsheaders, _.Library.String datetimecolumn, _.Library.List channelColumns, _.Library.List channelTypes, _.Library.List mtorder, _.Library.List mtunary) |
| Update temp file #tfn using the data in DataFrame df acquired from TimeSeries predictions Inputs: tfn: Temp file number df: a Python DataFrame headers: IRIS table column names pcTypes: datetime column name.
|
|
_.Library.Status | TempFileToDataFrame (_.Library.List columns, _.Library.List types, _.Library.Integer tfn, _.Library.List argspos, _.SYS.Python df, _.Library.Integer count, _.Library.List mtorder, _.Library.List mtunary) |
| Convert an IRIS temp file into Python Pandas DataFrame data.
|
|
_.Library.Status | WaitForTraining (trainkey, _.ML.TrainingRun trainingrun, _.ML.TrainedModel trainedmodel, _.Library.Integer timeoutMS) |
| Check for training complete.
|
|
Implements the AutoML provider.
Update temp file #tfn using the data in DataFrame df Inputs: tfn: Temp file number df: a Python DataFrame fieldnames=$lb(field1, ...): A $List of strings that indicates names of fields in df that will be added to temp file #tfn positions=$lb(pos1, ...): A list of integers that indicates the corresponding positions of each df field in temp file #tfn types=$lb(type1, ...): A list of integers that indicates the corresponding ObjectScript type of each df field in temp file #tfn isPredict=$lb(predict1, ...): A list of integers that indicates if each df field is predict or probablity.
If predict=1, this is predict, otherwise, probability