IRISLIB database
Provider Class Reference

Implements the AutoML provider. More...

Inheritance diagram for Provider:
Collaboration diagram for Provider:

Public Member Functions

_.Library.String pyval2str (pyval)
 Convert a python value to an SQL string.
 
- Public Member Functions inherited from RegisteredObject
_.Library.Status OnAddToSaveSet (_.Library.Integer depth, _.Library.Integer insert, _.Library.Integer callcount)
 This callback method is invoked when the current object is added to the SaveSet,. More...
 
_.Library.Status OnConstructClone (_.Library.RegisteredObject object, _.Library.Boolean deep, _.Library.String cloned)
 This callback method is invoked by the <METHOD>ConstructClone</METHOD> method to. More...
 
_.Library.Status OnNew ()
 This callback method is invoked by the <METHOD>New</METHOD> method to. More...
 
_.Library.Status OnValidateObject ()
 This callback method is invoked by the <METHOD>ValidateObject</METHOD> method to. More...
 

Public Attributes

 initialized
   More...
 

Static Public Attributes

 PROVIDERNAME = None
 Provider name.
 
- Static Public Attributes inherited from Provider
 DEFAULTPROVIDER = None
 Default provider name.
 
 PROVIDERNAME = None
 Provider name.
 
 SQLTYPE = None
 Type of SQL TRAIN will operate on Options are "resutset" or "query". More...
 
- Static Public Attributes inherited from RegisteredObject
 CAPTION = None
 Optional name used by the Form Wizard for a class when generating forms. More...
 
 JAVATYPE = None
 The Java type to be used when exported.
 
 PROPERTYVALIDATION = None
 This parameter controls the default validation behavior for the object. More...
 

Private Member Functions

_.Library.Status BeginTraining (_.ML.Model model, _.SQL.StatementResult data, _.ML.TrainingRun trainingrun, _.Library.String name, trainkey)
 Train an ML model. More...
 
_.Library.Status DataFrameToTempFile (_.Library.Integer tfn, _.SYS.Python df, _.Library.List fieldnames, _.Library.List positions, _.Library.List types, _.Library.List isPredict)
 Update temp file #tfn using the data in DataFrame df Inputs: tfn: Temp file number df: a Python DataFrame fieldnames=$lb(field1, ...): A $List of strings that indicates names of fields in df that will be added to temp file #tfn positions=$lb(pos1, ...): A list of integers that indicates the corresponding positions of each df field in temp file #tfn types=$lb(type1, ...): A list of integers that indicates the corresponding ObjectScript type of each df field in temp file #tfn isPredict=$lb(predict1, ...): A list of integers that indicates if each df field is predict or probablity. More...
 
_.Library.Status OnInit ()
 Initialize an ML provider.
 
_.Library.Status PredictAll (_.ML.AutoML.TrainedModel trainedmodel, _.Library.Integer tfn, _.Library.List argspos, _.Library.List predpos, _.Library.List probpos, _.Library.String expr, _.Library.List mtorder, _.Library.List mtunary)
 Bulk Predict.
 
_.Library.Status ResultSetToDataFrame (_.SQL.StatementResult data, _.Library.RegisteredObject info, _.Library.RegisteredObject df, _.Library.Integer count, _.Library.String predictingColumn)
 Convert an IRIS result set into a dataframe. More...
 
_.Library.Status StartProfiler (_.Library.String options, _.SYS.Python profiler)
 Start the Python profiler.
 
_.Library.Status StopProfiler (_.SYS.Python profiler, _.Library.String sortby, _.Library.String results)
 Stop the Python profiler.
 
_.Library.Status TSDataFrameToTempFile (_.Library.Integer tfn, _.SYS.Python df, _.SYS.Python tsheaders, _.Library.String datetimecolumn, _.Library.List channelColumns, _.Library.List channelTypes, _.Library.List mtorder, _.Library.List mtunary)
 Update temp file #tfn using the data in DataFrame df acquired from TimeSeries predictions Inputs: tfn: Temp file number df: a Python DataFrame headers: IRIS table column names pcTypes: datetime column name.
 
_.Library.Status TempFileToDataFrame (_.Library.List columns, _.Library.List types, _.Library.Integer tfn, _.Library.List argspos, _.SYS.Python df, _.Library.Integer count, _.Library.List mtorder, _.Library.List mtunary)
 Convert an IRIS temp file into Python Pandas DataFrame data.
 
_.Library.Status WaitForTraining (trainkey, _.ML.TrainingRun trainingrun, _.ML.TrainedModel trainedmodel, _.Library.Integer timeoutMS)
 Check for training complete.
 

Static Private Member Functions

 GetDefaultSettings (_.Library.DynamicObject settings)
 Adds the default settings for AutoML to the settings dynamic object.
 
_.Library.Status ResultSetMetaData (_.SQL.StatementResult data, _.Library.RegisteredObject info, _.Library.List columns, _.Library.List types)
 Determine the metadata for a result set.
 

Detailed Description

Implements the AutoML provider.

Member Function Documentation

◆ BeginTraining()

_.Library.Status BeginTraining ( _.ML.Model  model,
_.SQL.StatementResult  data,
_.ML.TrainingRun  trainingrun,
_.Library.String  name,
  trainkey 
)
private

Train an ML model.

name is no longer used. trainingrun.name is already defined

Reimplemented from Provider.

◆ DataFrameToTempFile()

_.Library.Status DataFrameToTempFile ( _.Library.Integer  tfn,
_.SYS.Python  df,
_.Library.List  fieldnames,
_.Library.List  positions,
_.Library.List  types,
_.Library.List  isPredict 
)
private

Update temp file #tfn using the data in DataFrame df Inputs: tfn: Temp file number df: a Python DataFrame fieldnames=$lb(field1, ...): A $List of strings that indicates names of fields in df that will be added to temp file #tfn positions=$lb(pos1, ...): A list of integers that indicates the corresponding positions of each df field in temp file #tfn types=$lb(type1, ...): A list of integers that indicates the corresponding ObjectScript type of each df field in temp file #tfn isPredict=$lb(predict1, ...): A list of integers that indicates if each df field is predict or probablity.

If predict=1, this is predict, otherwise, probability

◆ ResultSetToDataFrame()

_.Library.Status ResultSetToDataFrame ( _.SQL.StatementResult  data,
_.Library.RegisteredObject  info,
_.Library.RegisteredObject  df,
_.Library.Integer  count,
_.Library.String  predictingColumn 
)
private

Convert an IRIS result set into a dataframe.


If the label column, predictingColumn, is defined,then rows with missing values in the label column will be excluded from the dataframe.

Member Data Documentation

◆ initialized

initialized