

 With thanks to:

Using Serenji

Serenji 2.1

Covering:

Starting Serenji
Using Serenji

Editing Routines
Printing

Using Serenji Serenji 2.1

 Page 1 of 29

Contents
CONTENTS ... 1

INTRODUCTION ... 2

STARTING SERENJI .. 3

THE SERENJI SENTRY .. 3
CONNECTING TO THE M OR CACHÉ SERVER .. 4
FINDING YOUR IP ADDRESS ... 4
STARTING A SESSION ... 4
STARTING A SESSION ... 5
USING THE SHELL .. 6
QUITTING THE SHELL .. 7

USING SERENJI .. 8

THE SERENJI SCREEN .. 8
THE STACK WINDOW .. 8
THE VARIABLES WINDOW ... 9
THE BREAKPOINTS WINDOW ... 11

Setting Breakpoints .. 11
DATA BREAKPOINTS ... 14
THE IMMEDIATE WINDOW ... 15
THE CODE WINDOW .. 16
TOOLBARS ... 18

The Bookmarks Toolbar ... 19
The Debug Toolbar .. 20
The Edit Toolbar .. 22
The File Toolbar... 23

EDITING ROUTINES ... 24

LOADING A ROUTINE ... 24
SAVING A ROUTINE ... 26
FROZEN ROUTINES .. 26
PRESERVED ROUTINES .. 26
CREATING A NEW ROUTINE... 27

PRINTING... 29

Revision File Reference Date Author Notes

0 \\Wiz\D\Lib\Manuals\Ser
enji\UsingSerenji.0.doc

6 December 2001 GJS Support
Desk

Using Serenji Serenji 2.1

 Page 2 of 29

Introduction
Serenji is a debugging and editing tool for Caché, DSM, GT.M and MSM.

Serenji is essentially split into two main parts, the server-side components and the 32-bit Windows
application.

Once installed, the Windows application runs a component called the Serenji Sentry which listens for a
connection request from the server component. If a connection request is received, then a Serenji
session is established and the connection to the server is made.

From that point the user can use the facilities of the Windows-based screen editor and the advanced
debugging tools of Serenji. These tools include the ability to step through the code, examining
information and setting breakpoints and break conditions. There are full routine-editing capabilities and
rich source color-coding makes it easier to read and identify components.

This document is intended to show you how to use the facilities offered by Serenji to aid you in both the
development and support of M and /or Caché applications.

Using Serenji Serenji 2.1

 Page 3 of 29

Starting Serenji
Once the application is installed on your PC and you have TCP/IP access to an M or Caché system with
the server-side components installed, you can connect and use Serenji.

The Serenji Sentry

The installation of Serenji will by default add a shortcut to SerenjiSentry.exe into the Windows start-up
folder on your PC. This is the component of Serenji that listens for a connection request from the M or
Caché server. It means that each time you start up your PC this component will run and wait for a
connection. If the component is running you will see it in the System Tray, at the bottom right of your
desktop screen.

If it is not running or you have stopped it for some
reason, you can start it manually by going to the
Start button, choose Programs

Then Serenji

and Serenji Sentry.

Using Serenji Serenji 2.1

 Page 4 of 29

Connecting to the M or Caché Server

Once the Sentry is running, you can connect to the server running the server-side components.

You should first connect to the M or Caché environment in the normal way.

*NOTE

Once you initiate a Serenji session, all M or Caché commands you type at the command line
prompt are directed through Serenji and so there is a significant decrease in system
performance. (Although as we shall see, there are ways to use the tool which will minimize
speed decreases.) This is not a problem when stepping through code line by line or when
writing a new routine but it is something to be aware of if a large amount of processing is
expected to occur between breakpoints.

Finding your IP Address

When a Serenji session is started, you must specify the IP address of your PC, though on all server
platforms except DSM you can use your PC's hostname as an alternative.

Finding the IP address of your PC is easily done when the Serenji Sentry is running. Simply move the
mouse pointer over the Sentry icon in the System tray and Sentry will tell you what the IP address is.

Bear in mind that some PCs are multi-homed (have more than on IP address), or are located behind
firewalls, so the value reported here might not be the one which allows the server to reach it.

In many cases Serenji can successfully identify the address of the PC from which your terminal session
connected. If no IP address or hostname is passed, it will default to use this. Try the following and see if
this works for you:

D SHELL^%Serenji()

Using Serenji Serenji 2.1

 Page 5 of 29

Starting a Session

Within the terminal session on the client machine, type the following at the command prompt :

D SHELL^%Serenji("IP Address")

Where IP Address is the number shown by Serenji Sentry as in the example on the previous page. The
IP Address will be a set of four numbers.

On some networks your IP Address may change from time to time so each time you start a Serenji
Session you should check it using the Sentry, as illustrated previously.

*NOTE

When typing in the command to start a Serenji session the routine name is case sensitive. It
must have a capital S and the rest of the routine name is in lower case. Also the IP Address
must be enclosed within quotes and there should be no spaces in the IP Address.

If you have typed the command correctly, have entered the correct IP Address and Serenji Sentry is
running on your PC, a connected session will begin on your PC.

The Serenji screen will appear and then control returns to the M or Caché terminal session. Your screen
will show something like this example.

Notice the prompt is prefixed by a
s to denote this is a connected
Serenji session running within the
Serenji Shell.

Using Serenji Serenji 2.1

 Page 6 of 29

Using the Shell

From this point on, unless you specify otherwise, all commands typed will run through the Serenji
debugger and will run much slower than normal.

For brief help on using the shell, type ? and press enter.

If you want to edit a routine, type:

ED MyRtn

where MyRtn is the name of the routine you want to edit.

If you want to run a routine, with the debugger breaking at the first command, type:

DB ^MyRtn

where MyRtn is the name of the routine you want to debug.

DB stands for DeBug or Do and Break.

Serenji will begin to run the routine specified and will break at the first command of the routine. At that
point the routine is loaded and displayed in the Serenji window, as in the example below.

Notice the main status line of the Serenji window which gives useful information about what Serenji is
doing.

Using Serenji Serenji 2.1

 Page 7 of 29

Alternatively, you can start the debug process from a particular line label by typing (for example):

DB Tag^MyRtn

This will load the routine called MyRtn into the debugger, begin running the routine at line label Tag and
pause execution at that point. Labels that take parameters can also be called:

DB DoIt^MyRtn($H)

The Serenji Shell supports command line recall.

To recall the Previous command line, press the cursor up key or use Ctrl+P.

To move to the next line in the command history buffer, use the cursor down key or press Ctrl+N.

By default the history buffer holds the last fifty entries. It operates in a circular fashion, so if you move
down to the last entry and move down once more it will go back to the first entry in the list.

To delete the entire command line, press Ctrl+X.

To move along the command line, use the cursor left and cursor right keys.

To move to the start of the line, use the Home key.

To move to the end of the line, use the End key.

To toggle between insert and overtype mode, use the Insert key.

To undo your edits, use Ctrl+Z.

Quitting the Shell

To Quit from the Shell on the M or Caché system, type Q or H. This will return you to the normal M or
Caché command prompt. You do not need to close the routines from within Windows first.

Using Serenji Serenji 2.1

 Page 8 of 29

Using Serenji

The Serenji Screen

By default the Serenji screen displays all the possible information windows. To close a window, use its
title bar 'Close' button or press Ctrl+F4. Windows can be displayed or switched to from the View menu,
by clicking on the appropriate window in the list.

The Stack Window

The Stack window shows the calls made to
subroutines and other routines.
In this example a call to PHDATV was made from
^pzd1, from line Rtn1+3.

If you click on a level in the window, the code
display changes to that line of code in that routine.

You can change the order that the stack window
displays the levels in by clicking on the Lvl column
heading.

You can also adjust the width of the columns by dragging the divisions between them.

The routine name is omitted from a level if it is the same as the preceding level. A level entry without a
Routine or Line entry means a call to untraceable code. This could be p-coded M routines or Caché
routines with source code removed.

Using Serenji Serenji 2.1

 Page 9 of 29

The Variables Window

This window, as its name suggests, shows local variable names and their values.

The variables are listed in the window in
alphabetical order.

Variables which were set or changed in the latest
debugging step are highlighted in Pink.

Changes which affect the $DATA status of a
variable are also highlighted in pink.

The values of the variables can be displayed in
different formats. To change the format of the
Value, click on the Symbol prefixing the value.

Values can be displayed up to a maximum length of 2047 characters after which it is truncated.
Truncation is indicated by a different symbol and ellipsis (…) at the end of the value.

If you are interested in watching the value of a particular variable while stepping through the code of a
routine, select that variable in the Variables window and it will remain in view while stepping through the
code, provided the variable still exists.

Using Serenji Serenji 2.1

 Page 10 of 29

Local variables which have descendants (an array) are displayed in the variables window with a plus
sign next to them.

Clicking on the plus sign will expand the display to
show the descendants and their values.

Click on the minus sign to collapse the display again.

The Private tab can only be used when debugging Caché applications. It will show variables which are
private to the current subroutine or function. They are private if their scope is limited by the use of a
New statement or of formal parameters. Formal parameters are listed in bold type.

The column widths in the Variables window can be adjusted by dragging the divisions between them.

When stepping through code in the code window, operation will be faster if Serenji does not have to
keep refreshing the Variables window after each step. So if you don't need it, close it. You can open it at
any point if you need to see any of the variables. Moving the mouse pointer over a variable name in the
Code window will display that variable name and its value. In many cases this is an adequate substitute
for the Variables window.

Using Serenji Serenji 2.1

 Page 11 of 29

The Breakpoints Window

This window allows you to see, set and edit breakpoints set in the code. Execution of the code is
paused just before the specified command is performed.

A breakpoint is a point at which execution of the code will be suspended, allowing interrogation of the
variables etc. Serenji will allow you to set breakpoints in a routine.

On some platforms, Serenji will also recognize the M Break command B. On other systems, a hard-
coded breakpoint will be ignored by Serenji, or worse, may invoke the standard command-line debugger
facilities. It is therefore best to remove these commands from your code.

Setting Breakpoints

You can set a breakpoint in Serenji in one of three ways:

1. By clicking in the gray column alongside the line of code, in the code window. A red dot will appear in
the column, indicating an enabled breakpoint on that line.

A smaller red dot in the code shows the
command to which the breakpoint applies.

2. By right-clicking on a line of code, and choosing "Set Breakpoint" from the context menu - this will set
the breakpoint for a particular command within the line.

3. By typing the reference to the line directly into the Breakpoint window.

Select a blank line in the Breakpoints window with
the mouse and press Enter on the keyboard.

Type the line reference, press Tab and then type
the routine name. Press tab again and type the
number of the command on that line at which you
wish the code execution to stop.

Using Serenji Serenji 2.1

 Page 12 of 29

Method one is by far the simplest, but method three (manually typing in the reference of the breakpoint)
allows you to set breakpoints in a routine before the routine is loaded by Serenji. So you can set one or
more breakpoints in a routine that you know will be called, before you begin the debugging process.
This allows you to let the code run until the required point is reached, rather than having to step through
lots of code until the required routine is called, then set the breakpoint. You can also do the same thing
by opening any routine in Serenji before it is called and setting a breakpoint in it.

Breakpoints can be quite simple or they can be quite intelligent. For instance you can define a
breakpoint for a particular routine, on a particular line, which will take effect only when a particular
command (Cmd) on that line is reached.

Not only that, but you can also define
a number of times that the specified
point is reached and the break should
be ignored. This is called the Delay.
This function is particularly useful
when debugging inside a FOR loop.
Rather than having to step through
the loop each time, specify the
number of times you want the loop to
execute before breaking.

The Condition field allows an M or Caché expression to be evaluated whenever the breakpoint is
reached. If the expression evaluates to false (zero), the breakpoint is ignored.

Conditions are applied to the breakpoint before the Delay is evaluated. If you use both a Delay and a
Condition in the same breakpoint, be careful as it may not work as you would expect. When executing
the code, Serenji decrements the value of Delay and when it becomes zero the breakpoint will take
effect, otherwise it is ignored. However if you also have a condition, which is always evaluated first,
the value of Delay will only be decremented on the occasions when the condition evaluates to true.

In the example above, the execution of the code will be suspended the third time that the second
command on the line is encountered whilst the value of XDY is greater than 128.

Each time you re-run code with a breakpoint which uses a delay, you have to re-enter the value of the
delay. This is because the value is decremented each time it the debugger runs through it.

Breakpoints can be either Enabled or Disabled. To keep a breakpoint but temporarily disable it, click
once on the red dot in the Breakpoint window.
It will then change to a red circle.
This denotes a disabled breakpoint.

Whilst disabled the breakpoint is ignored by the debugger and code execution will not be stopped by it.

Double-clicking on the header of the first column in the Breakpoint window disables or enables all
breakpoints.

Using Serenji Serenji 2.1

 Page 13 of 29

The column sizes of the columns within the Breakpoint window can be adjusted by dragging on the
divisions between the column headers. Columns can also be re-ordered by dragging their headers.

*NOTES

The Breakpoint window does not validate entries which are manually entered into it. Therefore
you could enter a breakpoint for a line in a routine which does not even exist.

Entries in the Breakpoint window are automatically sorted by routine name, then by order of the
line within the routine (provided the routine is loaded).

Using Serenji Serenji 2.1

 Page 14 of 29

Data Breakpoints

Data breakpoints are sometimes called Watchpoints. An expression is specified and whenever the
value of that expression changes, execution of the code will be suspended. This can be anywhere in the
code rather than at a particular line or command.

An Expression is entered.

The current Value of the expression is shown.

Whenever that value changes code execution is
suspended and the new value is displayed
alongside the Previous value

Data breakpoints consume a lot of system resources as each expression is evaluated after each
command is executed. If you can use another method to achieve the required result then you may want
to do so as the performance of the system will suffer with the use of Data breakpoints.

Using Serenji Serenji 2.1

 Page 15 of 29

The Immediate Window

The immediate window allows interaction with the session when execution of the code is paused, such
as when a breakpoint is reached.

Using M or Caché commands you can set / re-set the value of variables being used in the code.

You can run utilities from the Immediate window provided they do not issue any READ commands.

Below is an example of the use of the Immediate window.

Using Serenji Serenji 2.1

 Page 16 of 29

The Code Window

By default the Code window is the largest of the windows displayed. This is where the code of the
routine being written /debugged appears.

By default code is displayed in
rich colors. This helps to
distinguish the various parts of
a routine.

Comments appear in bold
green.

Line labels are shown in bold
blue.

When debugging, the line of
code to be executed next is
highlighted and has an arrow
pointing to it.

M or Caché Commands, Global References etc. are in plain black.

Variables are shown in bold black. Text Values are shown in Teal.

The size and face of the text used in the code window and the Immediate window can be changed by
clicking on the Tools menu and choosing Font…

From the Font window choose the size of font required.

Users in some locales may need to choose a non-Western
script so that all characters are displayed correctly.

Using Serenji Serenji 2.1

 Page 17 of 29

When code is being displayed in debug mode, (i.e. when at a breakpoint), placing the mouse pointer
over a local or global variable reference, a system variable or an expression will show a data tip.

The data tip will show the
name of the object and the
currently assigned value, if it
has one.

Holding the mouse pointer over
a call to a subroutine or
another routine will display any
comment on that line.

This takes advantage of good
coding practices such as
providing comment lines at the
line label.

Using Serenji Serenji 2.1

 Page 18 of 29

Toolbars

By default all available toolbars are displayed. To switch toolbars on or off, from the View menu choose
Toolbars then choose the toolbar required.

The toolbars are fully configurable,
and may be docked or floating. They
can be positioned by dragging them
by the gripper at the left hand end of
the toolbar.

Toolbars can be changed or you can
define your own, grouping the
buttons as required, by using the
Customize… option.

The toolbars all have Tool Tips. If you hold the mouse pointer over any button on the toolbars for a few
seconds without clicking, a small label will appear telling you the title of the button. They are mostly self-
explanatory and in keeping with most Windows-based applications. There are a few which are peculiar
to Serenji and they are explained in the following section.

Using Serenji Serenji 2.1

 Page 19 of 29

The Bookmarks Toolbar

Only one button on the Bookmark toolbar is active until the bookmarks are used. The other buttons then
become active. Bookmarks are used to mark specified lines of interest in a routine. This will enable the
line to be quickly and easily found later. Several bookmarks can be used at any one time and moving
between them is managed from the bookmark toolbar.

To bookmark any line in a routine, place the cursor on that line and click the Bookmark button.

At this point the other buttons on the bookmark toolbar
will become active.

The chosen line in the routine will have a bookmark flag alongside it in the left margin.

When you have bookmarks set within a
routine, you can navigate between them by
clicking on the appropriate button.

Clear all bookmarks

Go to first bookmark

Go to previous bookmark Go to last bookmark

Go to next bookmark

Bookmarks only exist for the editing session currently open. If you close a routine, its bookmarks will be
lost.

Using Serenji Serenji 2.1

 Page 20 of 29

The Debug Toolbar

Apart from the Disconnect button, this toolbar only becomes active when a routine is being debugged.

Step In Step Over Step Out

Fast Forward Break On Error

Go Toggle Breakpoint

Break Run Fast To Cursor

Disconnect
The disconnect button will do just that: it will disconnect your PC’s Serenji session from your session on
the host M or Caché system. Any debugging operation or editing session will be discontinued and the
normal command prompt will return in the M or Caché session.

In the case of an editing session where a routine has been modified, you will be prompted to save the
amended routine before it disconnects.

Step In (F8)
In this mode, code is executed command by command. Each line of code is highlighted before it is
executed.

To progress to the next command, click the Step In button or press F8 on the keyboard.

Step Over (Shift+F8)
The Step Over mode is used to skip over a subroutine, routine or extrinsic function call. It will treat such
a call as one command. Execution will pause again once control returns from the call.

Step Out (Ctrl+Shift+F8)
This function is used when you have entered a subroutine, routine or function using Step In mode and
you decide that no further investigation within that call is needed. Clicking the Step Out button will allow
all the code to run up to the point where control returns from the call. Code execution will again pause at
that point.

Fast Forward (Shift+F5)
Use Fast Forward to execute code which you don't want to monitor with Go mode. Fast Forward will
allow the code to execute until a breakpoint is reached or until a 'Break-on-error' event is triggered.

Serenji cannot interrupt or break into the execution once fast forward has been initiated.

Using Serenji Serenji 2.1

 Page 21 of 29

If you choose Fast Forward when there are no breakpoints set and break-on-error is not set, Serenji will
revert to normal GO mode. You can click on Fast Forward again to force it to run in this mode.

In certain situations (e.g. data breakpoints set) Fast Forward mode is unavailable. Watch the Serenji
status line for information.

Go (F5)
Clicking the Go button or pressing F5 on the keyboard will cause code execution to continue. Execution
will pause when a breakpoint is reached or a 'Break-on-error' event is triggered (if this is enabled).

Go mode retains the ability to be interrupted by clicking the Break button. Go mode executes code
much more slowly than Fast Forward mode.

Break
When using Go mode or a step operation such as Step Out, you can use the Break button to pause the
code execution at the next command.

Run Fast To Cursor (Ctrl+F8)
This feature allows you to run the code quickly to a specified point without having to set a breakpoint.
From a paused position in the code, position the cursor on the line you want the code to stop at, then
click the Run Fast To Cursor button, or press Ctrl+F8 on the keyboard, or right-click and choose Run To
Line.

It is not possible to break into the code execution during this operation. It is the equivalent of setting a
breakpoint, Fast Forwarding to that point, and then deleting the breakpoint.

Toggle Breakpoint
This will insert a breakpoint at the first command of the line that the cursor is currently on, or delete one
which has already been set.

Break On Error
This button toggles the break-on-error setting on or off. Break on error means that the code execution
will pause at the point of an error being detected. When the M or Caché system detects a program error
and an error handler routine is about to be entered, code execution stops. The current variables can be
examined, and the stepping functions used.

Using Serenji Serenji 2.1

 Page 22 of 29

The Edit Toolbar

This toolbar contains some of the standard Windows functions such as Cut, Paste, Delete, etc.

The one function that is not a Windows standard is the Line Label List.

When a routine is loaded, in either debug or edit mode, the list contains all the line labels of the routine.
Choosing a line label from the list jumps to that line in the code window. You can also type into this list,
and the auto-complete function will complete what you are typing. Offsets using + or – can be added to
any line label to specify more exactly where you want to jump to.

Using Serenji Serenji 2.1

 Page 23 of 29

The File Toolbar

This toolbar allows you to open and close routines in edit mode within Serenji. When Serenji is
connected to the host M or Caché system, it can read the names of the routines available in the current
UCI /namespace /directory.

New Open Save Save All Print

Using Serenji Serenji 2.1

 Page 24 of 29

Editing Routines

Loading a Routine

Once you have a Serenji session connected to the M or Caché system server (with the shell running),
you can load routines into Serenji and take advantage of the advanced Windows-type functionality.

Serenji can be integrated with local configuration management and version control procedures. These
may restrict your ability to open a routine for editing.

To open a routine, click on the File menu and choose Open or click the Open button on the toolbar.

The Open window will appear after a few seconds.

The current UCI /namespace /directory will
be highlighted.

The items present there, in this case the
Routines are listed in the right hand pane.

Additional information about the routine is
also shown.

The sort order can be reversed each time
the item column heading is clicked.

You can also sort the items by the date they were last saved.

The 'Item Names' box allows you to select which routines will be displayed. You can use ? as a wildcard
to mean any single character and * to mean any number of characters. You can also enter more than
one pattern, separating them by semicolons. Whatever you enter will be used to filter the item list so
that only those whose names match the pattern(s) are displayed. The eight most recently used patterns

Using Serenji Serenji 2.1

 Page 25 of 29

are available to be selected from the dropdown list. Alternatively, you can enter the name of a single
item to be opened.
Choose the routine you require from those listed. You can also select several routines to open at the
same time.

Provided you have edit rights, you can click the
Open for Editing button to open the routine(s).

Depending on how your local editing policy is
implemented, read-only routines may show
'ghosted'. If you do not have edit rights to the
routine(s), you can click the Open Read-only
button.

You can also open routines as read-only even if you
have edit rights. This would avoid accidental
changes to the routine.

Clicking the Recent tab will show a list of the Recently Opened Items.

Checks carried out during the load may mean that
the routine can only be opened in Read-Only mode -
for example if you do not have edit rights to it. You
will then be asked if you wish to proceed with the
open.

Using Serenji Serenji 2.1

 Page 26 of 29

If a routine is open for editing and changes are made to the routine, or a new routine is created, the
status line will indicate that changes have been made to the routine.

The status line also indicates the current cursor position within the routine. You can double-click here
to open the GoTo dialog.

Saving a Routine

Routines can be saved only once they have been amended. Click on the Save (or the Save All) button
on the File toolbar, or enter Ctrl+S.

Frozen Routines

Routines can be edited during a debug session provided they are not in the current execution stack, (i.e.
provided the debugger is not currently executing any of that routine's code).

If a routine is loaded for editing and then the routine is entered in debug mode, the routine in the Edit
window will be frozen.

In this example the routine ^BSSUTIL9 was
first opened in edit mode.

Then the routine was opened in a debug
session when execution stepped into it.

Both versions of the routine remain open in
the Serenji session but the edit version is now
frozen and can no longer be edited.

It will remain like this either until the debug
session ends or until the code execution
leaves the BSSUTIL9 routine.

Preserved Routines

If the situation arises where the server-side component of Serenji unexpectedly disconnects from the
PC client component and changes have been made to an unsaved routine, a message box will appear
to explain how to recover the changes once the server connection has been re-established.

Using Serenji Serenji 2.1

 Page 27 of 29

Creating a New Routine

Creating new routines is easy within Serenji. Just click on the File menu and choose New or click on the
New button.

A new routine is created in the editor.

A default line label is created RtnX, where X is the number of the routine created in the current session
of Serenji.

By default a comment line is also created as the first line of the new routine.

You should of course change the line label and the comment line.

The new routine can be created in the editor, which functions in the same way as any simple word
processor. In the current version lines do not wrap around in the Serenji editor.

Using Serenji Serenji 2.1

 Page 28 of 29

The first time you save a new routine you will be prompted to assign the routine a name. The default
comes from the label of the first line in the routine. Type the required name into the Item Name box and
check that the correct UCI /namespace /directory is highlighted.

Click the Save button to save the routine
in the highlighted UCI /namespace
/directory with the specified name.

Using Serenji Serenji 2.1

 Page 29 of 29

Printing
A print option is provided from within Serenji. You can direct the output to any of your available
Windows printers.

From the File menu, choose Print or click the Print button on the toolbar.

The standard Windows Print screen will
appear.

Currently, long lines are truncated rather than
wrapped on the print-out. Using the Print
dialog's Properties button to select Landscape
orientation may help work around this
limitation.

